|_utenze collegate alla rete
  |_utenze isolate



BCR S.r.l.
Elettronica industriale
Materiale elettrico
Information communication tecnology


..per un pieno di energia

home page - chi siamo - dove siamo - prodotti - sistemi FV - partners news - contatti

Dal punto di vista dell’ ambiente.


A - Pollution and toxicity (Da Wikipedia)

Carbon dioxide content in fresh air varies and is between 0.03% (300 ppm) to 0.06% (600 ppm), depending on location and in exhaled air approximately 4.5%. When inhaled in high concentrations (greater than 5% by volume), it is immediately dangerous to the life and health of humans and other animals. The current threshold limit value (TLV) or maximum level that is considered safe for healthy adults for an 8-hour work day is 0.5% (5000 ppm). The maximum safe level for infants, children, the elderly and individuals with cardio-pulmonary health issues would be significantly less.

These figures are valid for carbon dioxide supplied in "pure" form. In indoor spaces occupied by humans the carbon dioxide concentration will also reach a level higher than in pure outdoor air. Concentrations higher than 1000 ppm will cause discomfort in more than 20% of occupants, and the discomfort will increase with increasing CO2 concentration. The discomfort will be caused by various gases coming from human respiration and perspiration, and not by CO2 itself. At 2000 ppm will the majority of occupants feel a significant degree of discomfort, and many will develop nausea and headache. The CO2 concentration between 300 and 2500 ppm is used as an indicator of indoor air quality in spaces polluted by human occupation.

Acute carbon dioxide toxicity is sometimes known as Choke damp, an old mining industry term, and was the cause of death at Lake Nyos in Cameroon, where an upwelling of CO2-laden lake water in 1986 covered a wide area in a blanket of the gas, killing nearly 2000. The lowering of carbon dioxide in the atmosphere is largely due to absorption by plants, which convert it to sugars through photosynthesis. Phytoplankton photosynthesis absorbs dissolved CO2 in the upper ocean and thereby promotes the absorption of CO2 from the atmosphere.[4]

Carbon dioxide is a surrogate for indoor pollutants that may cause occupants to grow drowsy, get headaches, or function at lower activity levels. To eliminate most Indoor Air Quality complaints, total indoor carbon dioxide must be reduced to below 600 ppm. NIOSH considers that indoor air concentrations of carbon dioxide that exceed 1000 ppm are a marker suggesting inadequate ventilation (1,000 ppm equals 0.1%). ASHRAE recommends that CO2 levels not exceed 1000 ppm inside a space. OSHA limits carbon dioxide concentration in the workplace to 0.5% for prolonged periods. The U.S. National Institute for Occupational Safety and Health limits brief exposures (up to ten minutes) to 3% and considers concentrations exceeding 4% as "immediately dangerous to life and health." People who breathe 5% carbon dioxide for more than half an hour show signs of acute hypercapnia, while breathing 7–10% carbon dioxide can produce unconsciousness in only a few minutes. Carbon dioxide, either as a gas or as dry ice, should be handled only in well-ventilated areas.

[edit] Atmospheric concentration

Atmospheric CO2 concentrations measured at Mauna Loa Observatory.
Atmospheric CO2 concentrations measured at Mauna Loa Observatory.

As of January 2007, the earth's atmospheric CO2 concentration is about 0.0383% by volume (383 ppmv) or 0.0582% by weight.[5] This represents about 2.996×1012 tonnes, and is estimated to be 105 ppm (37.77%) above the pre-industrial average.[6]

Because of the greater land area, and therefore greater plant life, in the northern hemisphere as compared to the southern hemisphere, there is an annual fluctuation of up to 6 ppmv (± 3 ppmv), peaking in May and reaching a minimum in October at the end of the northern hemisphere growing season, when the quantity of biomass on the planet is greatest.[citation needed]

Despite its small concentration, CO2 is a very important component of Earth's atmosphere, because it absorbs infrared radiation at wavelengths of 4.26 µm (asymmetric stretching vibrational mode) and 14.99 µm (bending vibrational mode) and enhances the greenhouse effect.[citation needed] See also "Carbon dioxide equivalent".

The three vibrational modes of carbon dioxide: (a) symmetric, (b) asymmetric stretching; (c) bending. In (a), there is no change in dipole moment, thus interaction with photons is impossible, while in (b) and (c) there is optical activity.
The three vibrational modes of carbon dioxide: (a) symmetric, (b) asymmetric stretching; (c) bending. In (a), there is no change in dipole moment, thus interaction with photons is impossible, while in (b) and (c) there is optical activity.

The initial carbon dioxide in the atmosphere of the young Earth was produced by volcanic activity; this was essential for a warm and stable climate conducive to life. Volcanic activity now releases about 130 to 230 teragrams (145 million to 255 million short tons) of carbon dioxide each year.[7] Volcanic releases are about 1% of the amount which is released by human activities.[citation needed]

Global fossil carbon emissions 1800–2000.
Global fossil carbon emissions 1800–2000.

Since the start of the Industrial Revolution, the atmospheric CO2 concentration has increased by approximately 110 µL/L or about 40%, most of it released since 1945. Monthly measurements taken at Mauna Loa[8] since 1958 show an increase from 316 µL/L in that year to 376 µL/L in 2003, an overall increase of 60 µL/L during the 44-year history of the measurements. Burning fossil fuels such as coal and petroleum is the leading cause of increased man-made CO2; deforestation is the second major cause. Around 24 billion tonnes of CO2 are released from fossil fuels per year worldwide, equivalent to about 6 billion tonnes of carbon. (See List of countries by carbon dioxide emissions.)

Smoke and ozone pollution from Indonesian fires, 1997.
Smoke and ozone pollution from Indonesian fires, 1997.

In 1997, Indonesian peat fires may have released 13%–40% as much carbon as fossil fuel burning does.[9][10] Various techniques have been proposed for removing excess carbon dioxide from the atmosphere in carbon dioxide sinks. Not all the emitted CO2 remains in the atmosphere; some is absorbed in the oceans or biosphere. The ratio of the emitted CO2 to the increase in atmospheric CO2 is known as the airborne fraction (Keeling et al., 1995); this varies for short-term averages but is typically 57% over longer (5 year) periods.

Increased amounts of CO2 in the atmosphere tend to enhance the greenhouse effect and thus contribute to global warming. The effect of combustion-produced carbon dioxide on climate is called the Callendar effect.

[edit] Variation in the past

CO2 concentrations over the last 400,000 years
CO2 concentrations over the last 400,000 years

The most direct method for measuring atmospheric carbon dioxide concentrations for periods before direct sampling is to measure bubbles of air (fluid or gas inclusions) trapped in the Antarctic or Greenland ice caps. The most widely accepted of such studies come from a variety of Antarctic cores and indicate that atmospheric CO2 levels were about 260–280µL/L immediately before industrial emissions began and did not vary much from this level during the preceding 10,000 years.

The longest ice core record comes from East Antarctica, where ice has been sampled to an age of 800,000 years before the present.[11] During this time, the atmospheric carbon dioxide concentration has varied between 180–210 µL/L during ice ages, increasing to 280–300 µL/L during warmer interglacials.[12] The data can be accessed at here.

Some studies have disputed the claim of stable CO2 levels during the present interglacial (the last 10 kyr). Based on an analysis of fossil leaves, Wagner et al.[13] argued that CO2 levels during the period 7–10 kyr ago were significantly higher (~300 µL/L) and contained substantial variations that may be correlated to climate variations. Others have disputed such claims, suggesting they are more likely to reflect calibration problems than actual changes in CO2.[14] Relevant to this dispute is the observation that Greenland ice cores often report higher and more variable CO2 values than similar measurements in Antarctica. However, the groups responsible for such measurements (e.g., Smith et al.[15]) believe the variations in Greenland cores result from in situ decomposition of calcium carbonate dust found in the ice. When dust levels in Greenland cores are low, as they nearly always are in Antarctic cores, the researchers report good agreement between Antarctic and Greenland CO2 measurements.

Changes in carbon dioxide during the Phanerozoic (the last 542 million years). The recent period is located on the left-hand side of the plot, and it appears that much of the last 550 million years has experienced carbon dioxide concentrations significantly higher than the present day.
Changes in carbon dioxide during the Phanerozoic (the last 542 million years). The recent period is located on the left-hand side of the plot, and it appears that much of the last 550 million years has experienced carbon dioxide concentrations significantly higher than the present day.

On longer timescales, various proxy measurements have been used to attempt to determine atmospheric carbon dioxide levels millions of years in the past. These include boron and carbon isotope ratios in certain types of marine sediments, and the number of stomata observed on fossil plant leaves. While these measurements give much less precise estimates of carbon dioxide concentration than ice cores, there is evidence for very high CO2 concentrations (>3,000 µL/L) between 600 and 400 Myr BP and between 200 and 150 Myr BP.[16] On long timescales, atmospheric CO2 content is determined by the balance among geochemical processes including organic carbon burial in sediments, silicate rock weathering, and vulcanism. The net effect of slight imbalances in the carbon cycle over tens to hundreds of millions of years has been to reduce atmospheric CO2. The rates of these processes are extremely slow; hence they are of limited relevance to the atmospheric CO2 response to emissions over the next hundred years. In more recent times, atmospheric CO2 concentration continued to fall after about 60 Myr BP, and there is geochemical evidence that concentrations were <300 µL/L by about 20 Myr BP. Low CO2 concentrations may have been the stimulus that favored the evolution of C4 plants, which increased greatly in abundance between 7 and 5 Myr BP. Although contemporary CO2 concentrations were exceeded during earlier geological epochs, present carbon dioxide levels are likely higher now than at any time during the past 20 million years[17] and at the same time lower than at any time in history if we look at time scales longer than 50 million years. NOAA research estimates that 97% of atmospheric CO2 created each year is from natural sources and approximately 3% is from human activities.[18]


B - Anidride carbonica (Da Wikipedia)

Anidride carbonica
formula di struttura e modello molecolare
diossido di carbonio
Nomi alternativi
  • ossido di carbonio (IV)
  • biossido di carbonio
Caratteristiche generali
Formula bruta o molecolare CO2
Massa molecolare (amu) 44,01
Aspetto gas incolore
Numero CAS 124-38-9
Proprietà chimico-fisiche
Densità (g/l, in c.n.) 1,98
Solubilità in acqua 1,45 g/l a 293 K
Temperatura di sublimazione (K) 195 (-78°C)
Punto critico 304 K (31°C)
7,38 × 106 Pa
Punto triplo 216.5 K (-56,6°C)
5,18 × 105 Pa
Tensione di vapore (Pa) a 293 K 5,73 × 106
Proprietà termochimiche
ΔfH0 (kJ·mol-1) -393,5
ΔfG0 (kJ·mol-1) -394,4
S0m(J·K-1mol-1) 213,8
C0p,m(J·K-1mol-1) 37,1

L'anidride carbonica (nota anche come diossido di carbonio o biossido di carbonio) è un'anidride formata da un atomo di carbonio legato a due atomi di ossigeno. È una sostanza fondamentale nei processi vitali delle piante e degli animali. È inoltre il principale gas serra presente nell'atmosfera terrestre.


Caratteristiche principali

A temperatura e pressione ambiente è un gas incolore e inodore. La sua formula chimica è CO2. Nel suo stato di solido è comunemente chiamato "ghiaccio secco", ed ha numerose applicazioni in questa forma. Sublima ad una temperatura di -78ºC.


La molecola dell'anidride carbonica è lineare; ognuno dei due atomi di ossigeno è legato tramite un legame doppio all'atomo di carbonio (O=C=O). L'angolo di legame di 180° neutralizza i due momenti dipolari opposti di ciascun doppio legame C=O, quindi la molecola risulta essere globalmente apolare. Il carbonio ha numero di ossidazione +4, si trova quindi al suo massimo stato di ossidazione possibile. Di conseguenza, l'anidride carbonica non è infiammabile e dal punto di vista chimico è relativamente inerte.

Produzione dell'anidride carbonica

L'anidride carbonica è il risultato della combustione di un composto organico in presenza di una quantità di ossigeno sufficiente a completarne l'ossidazione. In natura, viene anche prodotta da batteri durante il processo di fermentazione ed è il sottoprodotto della respirazione.

Le piante la utilizzano per la fotosintesi che, combinandola con l'acqua e per azione della luce solare e della clorofilla, la trasforma in glucosio liberando ossigeno come sottoprodotto.

È presente a basse concentrazioni (379 ppm nel 2004) nell'atmosfera della Terra, dove agisce come gas serra. La correlazione tra il rapido aumento della sua concentrazione nell'atmosfera nell'ultimo secolo - principalmente dovuto all'intenso uso di Combustibili fossili - ed il fenomeno di riscaldamento globale con la conseguente contrazione dei ghiacciai ed espansione delle aree desertiche della Terra sembra ormai essere un fatto assodato.


C - L’effetto serra è un fenomeno senza il quale la vita come la conosciamo adesso non sarebbe possibile. Questo processo consiste in un riscaldamento del pianeta per effetto dell’azione dei cosiddetti gas serra, composti presenti nell’aria a concentrazioni relativamente basse (anidride carbonica, vapor acqueo, metano, ecc.). I gas serra permettono alle radiazioni solari di passare attraverso l’atmosfera mentre ostacolano il passaggio verso lo spazio di parte delle radiazioni infrarosse provenienti dalla superficie della Terra e dalla bassa atmosfera (il calore riemesso); in pratica si comportano come i vetri di una serra e favoriscono la regolazione ed il mantenimento della temperatura terrestre ai valori odierni.
Questo processo è sempre avvenuto naturalmente e fa sì che la temperatura della Terra sia circa 33°C più calda di quanto lo sarebbe senza la presenza di questi gas.
Ora, comunque, si ritiene che il clima della Terra sia destinato a cambiare perché le attività umane stanno alterando la composizione chimica dell’atmosfera. Le enormi emissioni antropogeniche di gas serra stanno causando un aumento della temperatura terrestre determinando, di conseguenza, dei profondi mutamenti a

carico del clima sia a livello planetario che locale. Prima della Rivoluzione Industriale, l’uomo rilasciava ben pochi gas in atmosfera, ma ora la crescita della popolazione, l’utilizzo dei combustibili fossili e la deforestazione contribuiscono non poco al cambiamento nella composizione atmosferica.
Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change, IPCC) ritiene che la temperatura media del pianeta sia aumentata di circa 0,6°C dal 1861. Inoltre, sulla base delle tendenze attuali di emissione dei gas serra, vi è la stima di un ulteriore aumento della temperatura terrestre tra 1,4 e 5,8°C nel periodo fra il 1990 e il 2100. Il conseguente cambiamento climatico comporterà delle implicazioni estremamente significative a carico della salute dell’uomo e dell’integrità dell’ambiente. Il clima infatti influenza fortemente l’agricoltura, la disponibilità delle acque, la biodiversità, la richiesta dell’energia (ad esempio per il riscaldamento o il raffreddamento) e la stessa economia.




BCR S.r.l.  Via Praga, 7/17
41049 Sassuolo (MO) - Italia
TELEFONO: 0039.(0)536 999611
FAX: 0039.(0)536.807144